天津矿粉厂电话:18526678933

粉煤灰氧化镁含量是多少,粉煤灰的化学成分和物理性能

更新时间:2020-10-20 22:08

粉煤灰的化学成分:

1、贵州粉煤灰的主要化学成分

粉煤灰的化学成分来源于煤粉的无机组分。煤的无机组分包括粘土矿物、少量黄铁矿、方解石、石英等。因此我国燃煤电厂粉煤灰的主要化学成份为:SiO2、AI2O3、Fe2O3、CaO、MgO、K2O、Na2O、SO3及未燃尽有机质(烧失量)等。其中SiO2、AI2O3来自黏土、页岩;氧化铁主要来自黄铁矿;氧化镁和氧化钙来自与其相应的碳酸盐和硫酸盐。不同来源的煤在不同燃烧条件下产生的粉煤灰,其化学成分差别很大。

 

2、粉煤灰各化学成分对其性能的影响:

SiO2和Al2O:

粉煤灰的活性主要来自玻璃体SiO2和玻璃体Al2O3在一定碱性条件下的水化能力。

 

CaO、MgO和R2O:

结合态的CaO

含量愈高,愈能提高其自硬性,使其活性大大高于低钙粉煤灰,对提高混凝土的早期强度很有帮助。然而,我国电厂排放的粉煤灰90%

以上为低钙粉煤灰,因此,开发高钙粉煤灰不失为改善粉煤灰资源化特性的一条途径。

 

即粉煤灰中的f-CaO、MgO、有效碱在一定的条件下有利于促进SiO2和AI2O3的水化反应。但为了绝对保证用于混凝土中粉煤灰的质量,在各国的规范中都对这类物质的含量加以限制。

 

MgO含量过高时,将使掺入粉煤灰的水泥、混疑土安定性带来不利影响。

 

SO3:

粉煤灰中硫以氧化物SO3形态存在,且含量过多时,有可能产生膨胀和对钢筋有锈蚀作用.GBJ146-1990、GB/T1596-2005和JGJ28-1986都规定拌制混凝土和砂浆用粉煤灰SO3不大于3%。水泥活性混合材料用粉煤灰不大于3.5%。

 

Fe2O3:

过量的Fe2O3对粉煤灰的活性不利。

未燃炭粒:

粉煤灰中的未燃炭粒为非活性物质,由于疏松多孔、吸水大,当含炭量过多时,对混凝土的需水性、密实度、外加剂掺量不利。值得供应粉煤灰厂家注意的是,碳粒颗粒的粒径大部分在45μm以上,平均密度只有1.5g/cm3左右。其体积比要比重量比大得多。

 

烧失量略大于含炭量,—般相差0.5%,若粉煤灰中有Ca(OH)2或碳酸盐存在时,由于它们在600℃时会分解,差别会更大。

 

GBJ146-1990、GB/T1596-2005和JGJ28-1986都规定拌制混凝土和砂浆用I级灰烧失量不大于5%,II级粉煤灰不大于8%,III级粉煤灰不大于15%。国内有80%以上的粉煤灰烧失量超过6%,许多地区的粉煤灰烧失量达不到II级要求。上海市推广的磨细粉煤灰研究表明:磨细后烧失量虽不降低,但碳粒对混凝土的不利影响明显改善,烧失量限值可以适当放宽。

 

水泥活性混合材料用粉煤灰烧失量不大于8%。

含水率:

含水率影响粉煤灰的储、运,对高钙粉煤灰来说,含水还会明显影响粉煤灰的活性,并造成固化结块。

GB/T1596-2005和JGJ28-1986、GBJ146-90都规定含水率不得超过1%。

粉煤灰

 

贵阳粉煤灰的矿物成分

粉煤灰是非晶体矿物、晶体矿物、少量未燃炭的混合物,三者的比例同样受到煤粉颗粒成分、粒度、燃烧温度、风压等多种因素的随机叠加影响。其中非晶体矿物为玻璃体、无定形碳和次生褐铁矿。玻璃体含量为50%~80%,是粉煤灰活性的来源。晶体矿物为石英、莫来石、磁铁矿、赤铁矿、氧化镁、生石灰及无水石膏等。石英为粉煤灰中的原生矿物,常呈棱角状,不规则粒径,含量不高;

 

莫来石针状形集合晶体来源于粉煤灰中的二氧化硅和三氧化二铝,含量在1.3-3.6%之间,其变化与煤粉中Al2O3含量及煤粉燃烧时的炉膛温度等诸多因素有关。

 

磁铁矿和赤铁矿是粉煤灰中铁的主要赋存状态,一般磁铁矿含量较高。

 

粉煤灰的物理性能:

 

1、表观色泽

变化很大,与成分相关。低钙灰一般呈乳白色,高钙粉煤灰一般呈浅黄色;随含碳量升高,粉煤灰色泽逐渐变深至灰黑色。用色泽指数表征,可以粗略判断粉煤灰性质的变化。

 

2、颗粒分类:

供应粉煤灰厂家用扫描式电子显微镜的观察表明,分为珠状颗粒和渣状颗粒两大类。珠状颗粒包括漂珠(常称空心微珠)、空心沉珠、复珠(子母珠)、密实沉珠(实心微珠)和富铁玻璃微珠等五大品种;在渣状颗粒中包括海绵状玻璃渣粒、碳粒、钝角颗粒、碎屑和粘聚颗粒等五大品种。较多电厂的粉煤灰以密实沉珠为主。正是由于这些颗粒各自组成上的变化,比例不同,直接影响到粉煤灰质量的优劣。

 

3、细度:

是供应粉煤灰厂家用于评估混凝土中粉煤灰质量最重要的参数之一。粒径分布范围与水泥接近,为0.5~300μm,但集中在45μm以下,即比水泥细得多。JGJ28-1986规定,以80μm标准筛人工筛分法测定其筛余量:I级灰不大于5%,II级灰不大于8%,III级不大于25%。GBJ146-90粉煤灰混凝土应用技术规范、GB1596-2005粉煤灰新标准中,采用45μm气流筛筛余量(%)为细度指标:拌制混凝土和砂浆用I级灰不大于12%,II级灰不大于20%,III级灰不大于45%。水泥活性混合材料用粉煤灰对细度未作要求。

 

4、比表面积:

由于密实颗粒与多孔颗粒混杂,比表面积不易测准。沿用气体吸附BET原理测定固态物质比表面积的方法检测,粉煤灰比表面积分布于1500~5000cm2/g。

 

5、密度:

可以评定粉煤灰质量的均匀性,是评估混凝土中粉煤灰质量最重要的参数之一。低钙灰的密度一般为1800~2800kg/m3

,高钙灰密度可达2500~2800kg/m3;堆积密度600~900kg/m3,压实密度1300-1600kg/m3;空隙率一般为60-75%。

 

6、需水量比

按GB/T2419测定试验胶砂和粉煤灰取代30%水泥的对比胶砂达到130-140mm流动度时的加水量之比,能在一定程度上反映粉煤灰物理性质的优劣。JGJ28-1986、GBJ146-1990、GB1596-2005都规定:拌制混凝土和砂浆用I级粉煤灰需水量比不大于95%,II级灰不大于105%,III级灰不大于115%。水泥活性混合材料用粉煤灰需水量比未作规定。

 

7、火山灰活性

1987年戴维斯(Davis、R,E)及其同事提出的“粉煤灰具有火山灰质混合材料的性质”。ISO对火山灰材料及其活性定义如下:火山灰材料就是在常温下与石灰一起水化后能够生成具有硬性的化合物的材料。对粉煤灰而言,就是在常温下与石灰反应的能力。SiO2、A12O3为酸性氧化物,CaO、Mg0为碱性氧化物,计算其碱性率(Mo),可以初步评定其活性:

若Mo=(CaO%+MgO%)/(SiO2%+AI2O3%)

公司新闻